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Abstract. We present experimental evidence for a strong analogy between quasi-2D uniform non-equilibrium steady states
(NESS) of excited granular materials and equilibrium thermodynamics. Under isochoric conditions we find that the structure
of granular NESS, as measured by the radial distribution function, the bond order parameter, and the distribution of Voronoi
cells, is the same as that found in equilibrium simulations of hard disks. Three distinct states are found corresponding to a
gas, a dense gas, and a crystal. The dynamics of the dense gas is characterized by sub-diffusive behavior on intermediate time
scales (caging). Under isobaric conditions we find a sharp first-orderphase transition characterized by a discontinuous change
in density and granular temperature as a function of excitation strength. The transition shows rate dependent hysteresis but is
completely reversible if the excitation strength changes quasi-statically. All of these behaviors are analogous to equilibrium
thermodynamics. The one difference is the velocity distributions, which are well described byP(c) = fMB[1+ a2S2(c2)],
in the range−2 < c < 2, wherec = v/

√
2T , v is one component of the velocity,T is the granular temperature,fmb is a

Maxwell-Boltzmann andS2 is a second order Sonine polynomial. The single adjustable parameter,a2, is a function of the
filling fraction, but notT . For |c| ≥ 2, P(c) ∝ exp(−A× c−3/2) as observed in many other experiments.

Keywords: Granular Materials, Non-equilibrium Steady-State
PACS: 47.57.Gc, 05.70.Ln, 81.05.Rm, 01.50.Pa

INTRODUCTION

According to thermodynamics, the equilibrium state of a
system is completely determined by a small number of
state variables, for example, the temperature, the pres-
sure, and density. The equilibrium state, which relies on
the fact that particle interactions conserve energy, is ho-
mogeneous and steady (time-independent). However, in
a granular system (collection of macroscopic particles)
interactions do not conserve energy. Therefore, the true
equilibrium state of the system is one in which all par-
ticles are at rest. However, a steady flow of energy into
a granular ensemble can produce a steady-state in which
the energy input balances the energy loss through col-
lisions [1, 2, 3]. We refer to this as a non-equilibrium
steady state (NESS) to emphasize the fact that, although
it is time-independent (steady), it is not in equilibrium
due to energy flow through the system. Under the appro-
priate conditions a NESS can also be homogeneous. Here
we use laboratory experiments to explore the extent to
which a homogeneous NESS is an analog to the equilib-
rium state of thermodynamics. By analogy with ordinary
fluids flows, which are assumed to be locally in thermo-
dynamic equilibrium, this will pave the way for analysis
of inhomogeneous time-dependent granular flow by as-
suming local (in time and space) uniform NESS.

We explicitly test the microscopic structure[1],
diffusion[2], and velocity distributions[3] to see how
they differ from equilibrium. We examine the phase be-

FIGURE 1. Experimental frames with superposed typical
trajectories of a single particle: (Left)φ = 0.567, (Center)
φ = 0.701 and (Right)φ = 0.749. Note that even though only
a single trajectory is shown for eachφ , particle tracking and
statistics were collected for all particles in the imaging window.
The particle diameter is 1.19mm.

havior of the system under constant volume conditions
(isochoric) using the bond order parameter. We look for
phase transitions under constant pressure (isobaric). To
be useful, a granular NESS must be entirely determined
by a small number of state variables just as in ordinary
thermodynamics. This requirement means that phase
transitions must be reversible with no hysteresis under
quasi-static parameter changes.

Structure, Diffusion, and Phase: We find [1] that the
structure of the uniform granular NESS is identical to the
equilibrium state found in Monte Carlo simulations of
elastic hard disks from the literature [4]. We find that the
state of the system under isochoric conditions is solely
determined by the density or filling fractionφ with three
phases: gas, intermediate, and crystal (Fig. 1). The phase



boundaries,φl (liquidus point) andφs (solidus point) are
determined by structure alone [1]. In the gas phase the
system is characterized by diffusive behavior. The inter-
mediate phase is the same as that of equilibrium hard
sphere/disk systems [5, 6, 7] showing the distinct signa-
ture of caging behavior (i.e., subdiffusive behavior at in-
termediate times, see Fig. 6, followed by diffusive behav-
ior at long times) and is consistent with the hexatic phase
in 2D equilibrium hard disks [8]. In the crystalline phase
particles do not diffuse and sit in a system-filling hexag-
onal lattice for all times studied. Under isobaric condi-
tions, we find a discontinuous, first-order phase transition
from a disordered gas to an ordered crystal. The state of
the system is determined by the strength of the energy in-
putQ, the number of particlesN, and the pressureP. Q is
analogous to temperature in thermodynamics. The gran-
ular temperatureT (kinetic energy per particle), and vol-
umeV are then determined byQ, N, andP. The transition
shows rate-dependent hysteresis as a function ofdQ/dt,
which becomes reversible as the rate slows (dQ/dt → 0).

Velocity Distribution: The velocity distributions, how-
ever, differ slightly from that of equilibrium systems.
They are well described byP(c) = fMB[1+a2S2(c2)], in
the range|c| < c∗, wherec = v/

√
2T , c∗ = 2, v is one

component of the velocity,T is the granular tempera-
ture, fmb is a Maxwell-Boltzmann, andS2 is a second
order Sonine polynomial. The single adjustable parame-
ter,a2, is a function of the filling fraction, but notT . For
|c| ≥ c∗, P(c) ∝ exp(−A × c−3/2) as observed in many
other experiments [9, 10]. In equilibrium systems,a2 = 0
andc∗ → ∞.

In order to test the applicability of equilibrium ther-
modynamic ideas to granular NESS, we have developed
two experimental systems to generate quasi-two dimen-
sional granular fluids in NESS. In the first, we inject en-
ergy in a spatially homogeneous way at constant volume
(isochoric) to produce a horizontal 2Duniformly heated
granular layer [1, 2, 3]. In the second, energy is injected
through the bottom boundary into a vertical 2D cell un-
der constant pressure (isobaric).

Horizontal Isochoric Cell: In the isochoric cell the
main experimental parameter is the filling fraction,φ =
N[d/(2R)]2, whereN is the total number of spheres, with
diameterd in a cell of radiusR = 50.8mm. φ is system-
atically varied from a single particle to hexagonal close
packing. Our experimental apparatus is adapted from a
geometry originally introduced by Olafsen and Urbach
[9]. We inject energy into a collection ofd=1.191mm
stainless steel spheres by sinusoidal vertical vibration
using an electromagnetic shaker at a frequencyf and
dimensionless maximum acceleration,Γ = A(2π f 2/g),
whereA is the amplitude of vibration andg is the grav-
itational acceleration. We typically work within the ex-
perimental ranges(10< f < 100)Hz and 1< Γ < 6. We
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FIGURE 2. Photographs of a 2D granular layer, with freely
floating (isobaric) weight: (a)Γ = 7.90,TVV = 0.12, crystal. (b)
Γ = 8.10,TVV = 0.59, gas.

confine the spheres to a fixed cylindrical volume (cylin-
drical axis parallel to gravity) using a horizontal stainless
steel annulus (85.3d inner diameter) and sandwiched be-
tween two glass plates. The thickness of the annulus sets
the height of the cell which can be varied from 1.05d to
2.5. The top glass plate is optically flat, but the bottom
plate is roughened by sand-blasting generating random
structures from 50µm to 500µm. The roughened bottom
surface increases the energy injected into the horizontal
velocities over a flat surface, as discussed in detail in [3].
It is this innovation, which allows us to study a wider
range of filling fractions (1.4×10−4 < φ < 0.8) than in
previous work. We record the dynamics of the system us-
ing high speed photography at 840Hz and track the parti-
cle trajectories in a(15×15)mm2 central region to avoid
boundary effects (see Fig. 1).

We have developed high-precision particle tracking
software using two-dimensional least squares minimiza-
tion of the particle positions, which is able to find 100%
of the N particles in the imaging window and resolve
the position~xn(t) of a particlen to sub-pixel accuracy
at each time step. In our imaging window we were able
to achieve resolutions of 1/50 of a pixel (which corre-
sponds to 1µm). Our algorithm constructs trajectories of
the particles allowing the calculation of the particle ve-
locities~vn(t), and other derived quantities.

From these data we measure the filling fractionφ ,
granular temperatureT = 1/(2N)∑N

n=1~v
2
n(t), velocity

distributionsP(~v), and Voronoi constructions.
Vertical Isobaric Cell: In the isobaric system,

there are three control parameters, the energy injection
strengthQ, the pressureP, and the number of particles
N. We placeN (34–85) monodisperse stainless steel
spherical ball bearings of diameterD = 3.175 mm
in a containerL = 17.5D wide by H = 20D tall by
1D deep, as shown in Fig. 2. A thin plunger slides



through a slot at the bottom of the cell and oscillates
sinusoidally to excite (heat) the particles from below.
As a proxy for Q, the driving is characterized byΓ
and f just as in the horizontal isochoric system. The
key difference in this experiment is a freely floating
weight that confines the particles from the top, allowing
the volume to fluctuate but providing constant pressure
conditionsP = Mg/L = W/L, whereW is the weight
and M is the mass of the floating weight. The weight
not only provides a constant (time-independent) pres-
sure, it also aids in creating a more uniform pressure
over the height of the cell. Due to gravity the pressure
drop ∆P across the granular layer is the weight of the
layerWl (i.e., ∆P = (P +Wl/L)−P = Wl/L = Nmg/L,
where m is the particle mass). The average pressure
is P̄ = (P +Wl/L)/2 = (W +Wl)/2L, and the relative
pressure variation isδP = ∆P/P̄ = 2Wl/(W + Wl).
Thus, 0< δP < 2, with the maximum atW = 0 or no
floating weight. We find that forW < Wl/2, δP > 4/3
the inhomogeneity of the pressure leads to other effects,
such as surface fluidization as previously seen in similar
systems (e.g., [11]). In the current studiesW is always
greater thanWl or δP < 1.

We use the same high-speed digital photography sys-
tem developed for the isochoric system to measure the
positions of the plunger, the weight, and all of the par-
ticles in the cell with a relative accuracy of 0.04% ofD
or approximately 1.2µm at a rate of 840 Hz. We track
the particles from frame to frame and assign a velocity to
each one, typically∼ D/5 per frame.

From these data we measure the cell volume, average
density and granular temperature (i.e., average kinetic
energy per particle). In our study, we focus on the behav-
ior of the system for an integer number of rows, which
is initially in a perfect crystalline state. To prepare the
system initially in the densest state, we increaseΓ to 16
and then slowly lower the acceleration to zero. From this
state we increaseΓ in 256 steps untilΓ = 16 and then de-
crease in another 256 steps untilΓ = 0. At each step we
take data. The time for each step is variable but typically
1–10s.

RESULTS

We compare the 2D uniformly-heated horizontal iso-
choric granular NESS described above to equilibrium
systems. We focus on three important aspects: structure,
diffusion (caging dynamics), and velocity distributions.
In this system, three phases emerge depending on the fill-
ing fractionφ as shown in Fig. 1—gas, intermediate, and
crystal. The boundaries of these phases are determined
by the orientational structure of the particle as described
below.
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FIGURE 3. Experimental (solid) and numerical (dashed, ex-
tracted from [4]) curves of the radial distribution functions for
5 values ofφ . The arrow points in the direction of decreasing
φ . Inset: Section ofg(r) curve forφ = 0.6.

Structure: We identify three key microscopic mea-
sures to compare the structure of the isochoric granular
NESS to equilibrium system: radial distribution function,
bond order parameter, and shape factor [4]. Each one fo-
cuses on a different aspect of the structure—the radial
distribution on positional order, the bond order param-
eter on orientational order, and the shape factor on the
topology of Voronoi cells. For comparison we used re-
cent Monte-Carlo simulation of hard disks by Moucka
and Nezbeda [4]. The validity of Monte-Carlo simula-
tion depends on equilibrium assumptions so this provide
a valuable comparison. For more details on these and
other measures in our granular NESS see [1].

Radial Distribution Function: The radial distribution
function g(r) is a standard way of describing the aver-
age positional structure of particulate systems [12].g(r)
measures the probability that two particle centers are a
distancer apart regardless of orientation. For hard parti-
cles there is zero probability that the particles overlap so
g(r) = 0 for r < d, whered is the diameter of the parti-
cles.

In Fig. 3 we plotg(r) for severalφ . For low filling
fractions (φ < 0.65) we observe fluid-like behavior, and
g(r) has peaks atr/d ≃1, 2 and 3, as is commonly seen in
hard sphere simulations [12]. The peaks represent corre-
lations in the distances between particles. At higher den-
sities (0.65< φ < 0.72),g(r) develops a shoulder below
the r/d = 2 peak, which evolves into a distinct peak lo-
cated atr/d =

√
3, signifying strong hexagonal packing.

For eachg(r) experimental curve in Fig. 3, we have su-
perposed a corresponding (dashed) curve from the Monte
Carlo simulation of equilibrium hard disks of Moucka
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FIGURE 4. Semi-logarithmic plot of the bond-orientational
order parameter,ψ6. The first two lines, I and II, are least
squares fits of the formψ ∼ exp[Aφ ] and line III is a linear
fit of the formψ ∼ Aφ . The dashed and solid vertical lines are
located atφl = 0.652 andφs = 0.719, respectively.

and Nezbeda [4], for identical values ofφ . The agree-
ment forr/d > 1.1 is so good that most of the numeri-
cal curves are hidden by the experimental curves. There
are no fitting parameters; the curves only depend onφ ,
which is measured directly in the experiments and the
simulations. The only discrepancies occur forr/d < 1.1,
as shown in the inset of Fig. 3 forφ = 0.60. This devia-
tion is due to the fact that in granular NESS the system
is not composed of 2D disks, but 3D spheres in a thin
geometry. This leads to out-of-plane collisions and an
apparent particle overlap, since we measure only the 2D
projection. This also lowers themeasured value ofg(r) at
contactg(d), which is important in kinetic theories, but
theactual value, which can be estimated from the known
layer thickness of 1.6d, is consistent with the equilibrium
value. From these measurements the structure of granu-
lar NESS is essentially indistinguishable from the equi-
librium structure.

Bond Order Parameter: The global bond-orientational
order parameter ψglobal

6 measures the extent to
which particles have 6-fold (hexagonal) orienta-
tional order regardless of distance. In equilibrium
systems angular correlations also arise asφ is in-
creased [13]. These correlations are quantified by
ψglobal

6 = |1/N ∑N
i=11/Mi ∑Mi

j=1 ei6θi j |, where N is the
number of particles in the observation window,θi j is the
angle between the particlesi and j and a fixed reference,
andMi is the number of nearest neighbors of particlei,
found using the Voronoi construction [14].ψglobal

6 is 0
for random positions and 1 for perfect hexagonal order.

In Fig. 4 we plot the dependence ofψglobal
6 on φ . The
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FIGURE 5. (Top) Plot for the probability distribution func-
tions of shape factor,P(ζ ,φ) for 6 values ofφ . The two vertical
lines located atζ = 1.159 andζ = 1.25 divide the Voronoi cell
types into 3 classes, A, B and C. Experimental curves are solid
and numerical are dashed (extracted from [4]). (Bottom) Frac-
tion of particles in each of the 3 classes A, B and C, (defined in
Top panel) as a function of filling fraction.

value of the bond orientational order parameter tends to
unity in the crystal phase, butψglobal

6 ≪ 1 for a disor-
dered phase. Two differentphase boundaries: φl = 0.652
andφs = 0.719 can be identified in Fig. 4 based on the
slope ofψ6(φ). The experimental behavior is identical
to equilibrium behavior, in which a two-step continu-
ous phase transition is observed during 2D crystalliza-
tion [13]. First, the isotropic fluid phase develops long
range angular order creating a hexatic phase, then the
hexatic phase develops long range positional order cre-
ating a crystalline phase.

Shape Factor: To examine the structure in more de-
tail we examine the local topology of Voronoi cells using
the shape factorζ as defined by Moucka and Nezbeda
[4]. The shape factor is a sensitive measure used to quan-
tify structural changes in the fluid-to-crystal transitionin
2D. ζ is defined at the particle level, using Voronoi tes-
sellation, asζi = C2

i /4πSi, whereSi is the surface area



andCi the perimeter of the Voronoi cell of theith par-
ticle. For circlesζ = 1 andζ > 1 for all other shapes
(ζ = 4/π ∼ 1.273 for square,ζ = π/5tan(π/5)∼ 1.156
for regular pentagons, andζ = 6/

√
3π2 ∼ 1.103 for reg-

ular hexagons). Therefore,ζ quantifies the topology of
the Voronoi cells associated with the individual particles.

In Fig. 5(top) we present a plot of the distribution of
shape factors,P(ζ ,φ) for severalφ . We superpose nu-
merical data (dashed lines) from Monte Carlo simula-
tions of equilibrium hard disks [4], for the same values of
φ , and find that our experimental results are nearly iden-
tical with the numerical simulations with no adjustable
parameters. For lowφ , P(ζ ) is broad with a flat maxi-
mum, representing a random distribution of Voronoi cell
types. Asφ is increased, P(ζ ) becomes localized around
a maximum, which moves toward lower values ofζ .
Eventually, forφ > 0.5 a distinct second maximum ap-
pears. At the crystallization point,φs = 0.719, the origi-
nal maximum disappears and the new maximum centered
at ζ ≈ 1.1, the value for regular hexagons, rises sharply.
The two maxima suggest at least two distinct classes of
shapes.

To quantify the classes (A, B, and C) we follow the
classification scheme proposed by Moucka and Nezbeda,
as shown in Fig. 5(top). The boundary between classes A
and B is set at the non-zero minimum ofP(ζ ) which is
only weakly dependent onφ and has an average value of
ζmin = 1.159. The upperζ cut-off ζu = 1.25 for class B is
set so that when the two maxima ofP(ζ ) are equal, the
number of particles in classes A and B types are equal
(i.e.,

∫ ζmin
0 P(ζ )dζ =

∫ ζu
ζmin

P(ζ )dζ ).
In Fig. 5(bottom) we plot the fraction of particles of

each typenA(φ), nB(φ), nC(φ) as a function ofφ . The
plot shows a clear change in the slope ofnA(φ) and
nB(φ) at φs = 0.719, the onset of crystallization. There
are several features nearφl . For example,nA(φ)≃ nB(φ)
andnC(φ)≃ 0. However, these features are not sharp and
would yield a different value ofφl . Further, it is not clear
why having equal numbers of type A and B is significant.
Regardless of the meaning of these features, they are
exactly the same for granular NESS and equilibrium hard
disk simulations.

Caging dynamics: Fig. 1 shows typical single particle
trajectories in each of the three phases found in granular
NESS. Simple fluid behavior is observed at lowφ , char-
acterized by random diffusion (Fig. 1(left)). Above crys-
tallization (φ > φs) the particles are completely confined
by their six hexagonally packed neighbors (Fig. 1(right)).
In the intermediate phase, both behaviors are seen but on
different time scales (Fig. 1(center)). At short times, par-
ticles are trapped in cages formed by their neighbors, but
they eventually escape to another cage and at long times
they diffuse from cage to cage. We use the Mean Square
Displacement (MSD) to show that the caging dynam-

10
−3

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

Time (s)

M
S

D
, 
<

[r
(t

)−
r(

0
)]

2
>

 (
m

m
2
)

slope=1

slope=2

φ=0.570

φ=0.626

φ=0.668

φ=0.679

φ=0.688

φ=0.701

φ=0.706

φ=0.711

φ=0.725

φ=0.771

single
particle

FIGURE 6. Time dependence of the Mean Square Displace-
ment for various values of filling fraction (numerical values
shown in the box), except for the upper most curve (+) which is
for a single particle in the cell. The arrow points in the direction
of increasingφ . Along the arrow, the symbols (*) and (+) are
located atφl andφs, respectively, to help place the curves in
the fluid’s phase diagram. The horizontal line (located at 9.954
mm2) corresponds to the square of 1/4th of the linear dimension
of the imaging window, above which finite system size effects
become important.

ics seen here is qualitatively identical to that of ordinary
dense fluid systems like colloids [5, 15] and supercooled
liquids [16].

We examine the MSD of the particle to more fully
understand the dynamic state of the system and to further
compare granular NESS with equilibrium systems. The
MSD M(t) = 〈[~x(t)−~x(0)]2〉, where~x(t) is the position
of a particle at timet, ~x(0) is its initial position, and
the brackets〈.〉 represent ensemble averaging over many
realizations. A log-log plot ofM(t) for a range ofφ
is shown in Fig. 6. Generally,M(t) ∼ tα(t), and α is
used to characterize the motion. At the shortest times the
motion of the particles is ballistic,α = 2. They simply
move according to~x(t) = vt, andM(t) ∼ t2, which gives
a slope of 2 on the log-log plot. At the lowest density
(marked with a+) there is only a single particle in the
cell, which moves diffusively and the slope ofM(t) tends
to 1. This shows that the trajectory of a single particle is
randomized over the cell.

Three types of behavior are seen in our granular
NESS, corresponding to the three snapshots in Fig. 1.
At low densities (φ < 0.6, Fig. 1(left)), the particle mo-
tion is diffusive. This means thatα ≥ 1 with α = 1 at
long times. For high densities (φ > 0.719, Fig. 1(left))
the particles are trapped in their crystalline cells, and
M(t) becomes a constant value set by the lattice spac-
ing with α = 0. However, in the intermediate phase
(0.6< φ < 0.719, Fig. 1(center)) a plateau develops at in-



−1 −0.5 0 0.5 1
−2

−1

0

1

2

ln(|c|)

−
ln

[−
ln

[P
(c

)/
P

(0
)]
]

 

 

(φ,f,Γ)
(0.44,50,4)
(0.53,50,4)
(0.64,50,4)
(0.74,50,4)
(0.80,50,4)
(0.57,40,4)
(0.57,60,4)
(0.57,70,4)
(0.57,80,4)
(0.57,100,4)
(0.57,50,1.4)
(0.57,50,2)
(0.57,50,3)
(0.57,50,4)
(0.57,50,6)

FIGURE 7. Double log plot of the tails ofP(c) for many
filling fractions (φ ), frequencies (f ) and acceleration (Γ). The
solid line correspond to stretched exponentials of the form
∼ exp(−A|c|3/2) whereas the dashed lines correspond to the
Gaussian behavior of the form∼ exp(−Ac2).

termediate times where the motion is sub-diffusive with
0 < α < 1. This plateau appears just before the liquidus
pointφl = 0.652 and gradually becomes increasingly vis-
ible aboveφl (marked as * in Fig. 6 to orient the curves
in the phase diagram). This represents the slowing down
due to the cage effect as shown in Fig. 1(center).

This behavior is the same as that seen in equilibrium
systems. We have also compared a number of other mea-
sures in [2], which show similar agreement with equi-
librium systems. In molecular systems this behavior is
typically observed indirectly from scattering experiments
[15]. In colloids, however, caging motion has been ob-
served directly through microscopy, in both 3D [5] and
quasi-2D [6] geometries. A large number of theoretical
[17, 18] and numerical [7, 19] studies have set out to fur-
ther investigate the importance of this heterogeneous dy-
namics. The relevance of caging in driven granular mate-
rials [20, 21] and air-fluidized particle systems [22] has
only recently started to be addressed.

Velocity distributions: As described above the iso-
choric granular NESS is nearly identical to its equilib-
rium counterpart in structure and diffusion. However,
there are a few differences. The most important is in
the single particle velocity distributionP(~v). This distri-
bution is a Maxwell-Boltzmann for equilibrium fluids.
fMB(~v) = Aexp

[

−~v2/(2T )
]

, where the mass of the par-
ticles is set to 1 andT is the equilibrium temperature
measured in units of energy (i.e., T is the average kinetic
energy per particle). To look for deviation from this in
granular NESS, we focus on the distribution of a scaled
single component of the velocityc = v/

√

(2T ), wherev
is the unscaled velocity component andT , the granular
temperature or average kinetic energy of the particles.
In definingT we set the mass to 1 for convenience, so

thatT is also, the variance ofP(v). Then, the normalized
Maxwell-Boltzmann isfMB(c) = 1/

√
π exp(−c2).

Deviations from the Maxwell-Boltzmann distribution
in granular material are well established [9, 10]. In par-
ticular, we distinguish between deviations at low veloc-
ities (|c| < 2) and at high velocities or tails (|c| ≥ 2).
Previous experiments focused on the tails, which repre-
sent less than 0.5% of the velocities. It is seen that ex-
perimental distributions exhibit a considerable overpop-
ulation and have been shown to scale as exp[−A|c|γ ],
γ = 3/2. This behavior is in agreement with numerical
[23] and theoretical [24] predictions. We see the same
behavior as shown in Fig. 7 for many experimental con-
ditions. The double logarithm creates a curve with slope
equal toγ. Even though these tails correspond to events
with extremely low probabilities, they increase the vari-
ance of the distribution andT and leads to a major dis-
crepancy in the region of high probability in the low ve-
locity portion of the distribution [25] which have, thus
far, been greatly overlooked in experimental work.

The velocity distribution is of fundamental importance
in kinetic theories of granular material (see e.g., [26]). As
a result, there have been many theoretical and numerical
studies on velocity distribution in granular NESS [23, 27]
in which the steady state velocity distribution has been
found to deviate from the Maxwell-Boltzmann distribu-
tion. van Noije and Ernst [24] studied these velocity dis-
tributions using approximate solutions to the inelastic
hard sphere Enskog-Boltzmann equation by an expan-
sion in Sonine polynomials. Their theoretical analysis
has been validated by numerical studies in both molec-
ular dynamics [23] and direct simulation Monte Carlo
[28, 29]. The use of Sonine corrections is particularly
attractive since it leaves the variance of the resulting ve-
locity distribution unchanged but leads to a non-Gaussian
fourth moment or kurtosis,K 6= 3.

For low velocities (|c|< 2), which corresponds to high
probability (> 99.5%) the experimental velocity distri-
bution in granular NESS fitsP(c) = fMB(1+ a2S2(c2))
whereS2(x) = (1/2x2 − 3/2x + 3/8) is the 1D second
order Sonine polynomial.a2, the only new fitting param-
eter, is a function of filling fractionφ alone [3]. In Fig. 8
we plot∆(c) = P(c)/ fMB(c)−1. The result is a function,
which is well represented byS2(c2). Also shown in Fig.
8 is a fit to higher order Sonine corrections. While these
higher order corrections improve the fit slightly, it does
not justify adding new parameters [3].

The phase transition to crystalline order in the iso-
choric NESS and in analogous equilibrium systems is
second order and proceeds through the complicated hex-
atic [13] or intermediate phase. To see if a first-order
phase transition exists in a granular NESS, we exam-
ine the isobaric (constant pressure) system described
above. For the results described below, we fix the number
N = 68, the pressureP, and varied the energy injection
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strengthQ. We measure the filling fractionφ and granu-
lar temperatureT . As a proxy forQ, we useΓ, the max-
imum acceleration measured in units of the gravitational
constantg = 9.8m/s2 at fixed frequencyf = 50Hz. A
better proxy forQ is Γ/(2π f ), which is∝ Γ at constant
f .

First-order phase transition: Depending on the
value of Q = Γ two states can exist, as shown in Fig.

2. ForΓ < 8 the system is in a crystalline state as shown
is Fig. 2(top). ForΓ > 8 the system is in a gas state as
shown is Fig. 2(bottom). Even though the value ofΓ dif-
fers by only 2.5%, across the transition the filling fraction
φ changes fromφs = 0.743±0.005 toφl = 0.632±0.006
or 16% and the granular temperature,TVV changes from
0.12±0.04(m/s)2 to 0.59±0.08(m/s)2 or a factor of 5.
The errors inφ andT represent the run to run deviations.
The temperature,TVV , is the vertical velocity variance,
which is different from the horizontal velocity variance.
Anisotropic granular temperature is common in granular
NESS when the forcing is only applied in one direction.

To check the reversibility of this transition we measure
φ andT as a function ofΓ. The results forφ are shown
in Fig. 9. TheT dependence is similar, but not shown
for clarity. The plot showsφ(Γ) as Γ is increased and
decreased as indicated by the arrows. Following the solid
curve starting fromΓ = 0, the system is in the densest
crystalline state. AsΓ is increased the crystal begins to
expand andφ decreases. AtΓ ≃ 9 there is a sharp change
in the density as the system goes from a crystalline state
to a gaseous state. The sharp change is the hallmark of
a first-order phase transition. AsΓ is increased further
the gas expands andφ decreases smoothly. WhenΓ is
decreased starting from 16 the system traces the same
(reversible) path untilΓ < 9 where hysteresis is clearly
visible. At Γ ≃ 7 the system freezes by a discontinuous
change in the density to a crystalline structure and then
follows a reversible path back toΓ = 0.

This is analogous to an equilibrium first-order subli-
mation phase transition (e.g. melting/freezing dry ice),
in which Γ plays the role of temperature. The hysteresis
represents super-cooling and super-heating. Moreover,
just as in an equilibrium phase transition the hysteresis
can be eliminated, by slowing down the rate of change
of the control parameter. In this case, decreasing the rate
of change ofΓ by a factor of 2 reduces the hysteresis
as shown by the dot-dash curve. By decreasing by an-
other factor of 5 a completely reversible, discontinuous
transition is produced curve is produced as shown by the
dashed curve.

CONCLUSION

We have shown that uniform granular NESS behave very
much like their equilibrium counterparts. This is surpris-
ing since energy is not conserved and must be supplied
to the system. The isochoric granular NESS has nearly
identical structure as compared to equilibrium simula-
tions of hard disks. The particle diffusion shows caging
behavior just like that of equilibrium systems. The ve-
locity distribution differs slightly from the equilibrium
Maxwell-Boltzmann, but 99.5% of the differences can
be captured by a small correction which depends only on



the filling fraction. The isobaric granular NESS shows
the standard signatures of a first-order phase transition
including rate-dependent hysteresis. The main difference
is that mechanical equilibrium still requires both phases
to have equal pressures, which is guaranteed by the iso-
baric boundary condition, but the lack of energy con-
servation removes the ordinary requirement of thermal
equilibrium, that both phases have the same temperature.
Thus there exists a strong analogy between uniform gran-
ular NESS and ordinary equilibrium thermodynamics. In
the future, we will test the analogy between local thermo-
dynamic equilibrium and local uniform NESS in systems
with gradients.
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