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Abstract. We present experimental evidence for a strong analogy between2idiamiform non-equilibrium steady states
(NESS) of excited granular materials and equilibrium thermodynamicgdekdsochoric conditions we find that the structure
of granular NESS, as measured by the radial distribution function, the baler parameter, and the distribution of Voronoi
cells, is the same as that found in equilibrium simulations of hard diskseTdiséinct states are found corresponding to a
gas, a dense gas, and a crystal. The dynamics of the dense gasdatieed by sub-diffusive behavior on intermediate time
scales (caging). Under isobaric conditions we find a sharp first-pigese transition characterized by a discontinuous change
in density and granular temperature as a function of excitation strengthirdiisition shows rate dependent hysteresis but is
completely reversible if the excitation strength changes quasi-staticallyf #iege behaviors are analogous to equilibrium
thermodynamics. The one difference is the velocity distributions, whiehnall described byP(c) = fyp[1+ axS(c?)],

in the range—2 < ¢ < 2, wherec = v/v/2T, v is one component of the velocity, is the granular temperaturéyy, is a
Maxwell-Boltzmann ands, is a second order Sonine polynomial. The single adjustable paramagtés,a function of the

filling fraction, but notT. For |c| > 2, P(c) 0 exp(—A x c~%/2) as observed in many other experiments.
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INTRODUCTION

According to thermodynamics, the equilibrium state of
system is completely determined by a small number
state variables, for example, the temperature, the pr
sure, and density. The equilibrium state, which relies or§
the fact that particle interactions conserve energy, is ho- _ ] _

mogeneous and steady (time-independent). However, ifIGURE 1. Experimental frames with superposed typical

: : ; trajectories of a single particle: (Leftp = 0.567, (Center
a granular system (collection of macroscopic particles) ! 0.701 and (Righgrp :p0'749. N(oteftt)ﬁlat even th(()ugh on)ly

interactions do not conserve energy. Therefore, the trug single trajectory is shown for eagh particle tracking and
equilibrium state of the system is one in which all par- statistics were collected for all particles in the imaging window.
ticles are at rest. However, a steady flow of energy intorhe particle diameter is 1.19mm.

a granular ensemble can produce a steady-state in which
the energy input balances the energy loss through col-
lisions [1, 2, 3]. We refer to this as a non-equilibrium havior of the system under constant volume conditions
steady state (NESS) to emphasize the fact that, althougfisochoric) using the bond order parameter. We look for
it is time-independent (steady), it is not in equilibrium phase transitions under constant pressure (isobaric). To
due to energy flow through the system. Under the approbe useful, a granular NESS must be entirely determined
priate conditions a NESS can also be homogeneous. Het®y a small number of state variables just as in ordinary
we use laboratory experiments to explore the extent tdhermodynamics. This requirement means that phase
which a homogeneous NESS is an analog to the equilibtransitions must be reversible with no hysteresis under
rium state of thermodynamics. By analogy with ordinary quasi-static parameter changes.
fluids flows, which are assumed to be locally in thermo- Sructure, Diffusion, and Phase: We find [1] that the
dynamic equilibrium, this will pave the way for analysis structure of the uniform granular NESS is identical to the
of inhomogeneous time-dependent granular flow by asequilibrium state found in Monte Carlo simulations of
suming local (in time and space) uniform NESS. elastic hard disks from the literature [4]. We find that the
We explicitly test the microscopic structure[l], state of the system under isochoric conditions is solely
diffusion[2], and velocity distributions[3] to see how determined by the density or filling fractignwith three
they differ from equilibrium. We examine the phase be-phases: gas, intermediate, and crystal (Fig. 1). The phase




boundariesg (liquidus point) andg; (solidus point) are (8) =7.90,T,, =012
determined by structure alone [1]. In the gas phase the
system is characterized by diffusive behavior. The inter-
mediate phase is the same as that of equilibrium hard
sphere/disk systems [5, 6, 7] showing the distinct signa-
ture of caging behavior (i.e., subdiffusive behavior at in-
termediate times, see Fig. 6, followed by diffusive behav-
ior at long times) and is consistent with the hexatic phase
in 2D equilibrium hard disks [8]. In the crystalline phase
particles do not diffuse and sit in a system-filling hexag-
onal lattice for all times studied. Under isobaric condi-
tions, we find a discontinuous, first-order phase transition
from a disordered gas to an ordered crystal. The state of
the system is determined by the strength of the energy ing| suUrE 2. Photographs of a 2D granular layer, with freely

putQ, the number of particle, and the pressufe. Qis  floating (isobaric) weight: (a) = 7.90, Tyy = 0.12, crystal. (b)
analogous to temperature in thermodynamics. The grar- = 8.10, Tyy = 0.59, gas.

ular temperaturd@ (kinetic energy per particle), and vol-
umeV are then determined kY, N, andP. The transition
shows rate-dependent hysteresis as a functiafQyfit,  confine the spheres to a fixed cylindrical volume (cylin-
which becomes reversible as the rate sloi@/dt — 0).  drical axis parallel to gravity) using a horizontal stagde
Velocity Distribution: The velocity distributions, how-  steel annulus (83d inner diameter) and sandwiched be-
ever, differ slightly from that of equilibrium systems. tween two glass plates. The thickness of the annulus sets
They are well described b(c) = fug[1l+a:S(c?)],in  the height of the cell which can be varied fron®3d to
the rangelc| < ¢*, wherec = v/+/2T, ¢* = 2,vis one  2.5. The top glass plate is optically flat, but the bottom
component of the velocity] is the granular tempera- plate is roughened by sand-blasting generating random
ture, frp is @ Maxwell-Boltzmann, an& is a second structures from 50mto 50Qum. The roughened bottom
order Sonine polynomial. The single adjustable paramesurface increases the energy injected into the horizontal
ter, ap, is a function of the filling fraction, but ndk. For  velocities over a flat surface, as discussed in detail in [3].
lc| > c¢*, P(c) O exp(—A x c%/?) as observed in many It is this innovation, which allows us to study a wider
other experiments [9, 10]. In equilibrium systemas=0  range of filling fractions (¥ x 10~ < ¢ < 0.8) than in
andc* — o, previous work. We record the dynamics of the system us-
In order to test the applicability of equilibrium ther- ing high speed photography at 840Hz and track the parti-
modynamic ideas to granular NESS, we have developedle trajectories in 415 x 15)mn? central region to avoid
two experimental systems to generate quasi-two dimenboundary effects (see Fig. 1).
sional granular fluids in NESS. In the first, we inject en- We have developed high-precision particle tracking
ergy in a spatially homogeneous way at constant volumesoftware using two-dimensional least squares minimiza-
(isochoric) to produce a horizontal 2iformly heated  tion of the particle positions, which is able to find 100%
granular layer [1, 2, 3]. In the second, energy is injectedof the N particles in the imaging window and resolve
through the bottom boundary into a vertical 2D cell un-the positionX,(t) of a particlen to sub-pixel accuracy

der constant pressure (isobaric). at each time step. In our imaging window we were able
Horizontal Isochoric Cell: In the isochoric cell the to achieve resolutions of 1/50 of a pixel (which corre-
main experimental parameter is the filling fractign= sponds to i1m). Our algorithm constructs trajectories of

N[d/(2R)]?, whereN is the total number of spheres, with the particles allowing the calculation of the particle ve-
diameterd in a cell of radiuskR = 50.8mm. ¢ is system- locitiesV,(t), and other derived quantities.

atically varied from a single particle to hexagonal close From these data we measure the filling fractipn
packing. Our experimental apparatus is adapted from granular temperaturd = 1/(2N)3N_; ¥2(t), velocity
geometry originally introduced by Olafsen and UrbachdistributionsP(V), and Voronoi constructions.

[9]. We inject energy into a collection af=1.191mm Vertical Isobaric Cdl: In the isobaric system,
stainless steel spheres by sinusoidal vertical vibratiorthere are three control parameters, the energy injection
using an electromagnetic shaker at a frequehgnd  strengthQ, the pressur®, and the number of particles
dimensionless maximum acceleratidh= A(27f2/g), N. We placeN (34-85) monodisperse stainless steel
whereA is the amplitude of vibration angis the grav-  spherical ball bearings of diametdd = 3.175 mm
itational acceleration. We typically work within the ex- in a containerL = 17.5D wide by H = 20D tall by
perimental range€lO< f < 100)Hzand 1< T <6.We 1D deep, as shown in Fig. 2. A thin plunger slides



through a slot at the bottom of the cell and oscillates
sinusoidally to excite (heat) the particles from below.
As a proxy forQ, the driving is characterized bk

—=0.6

and f just as in the horizontal isochoric system. The 5
key difference in this experiment is a freely floating
weight that confines the particles from the top, allowing 4r
the volume to fluctuate but providing constant pressure
conditionsP = Mg/L = W/L, whereW is the weight 3

and M is the mass of the floating weight. The weight
not only provides a constant (time-independent) pres
sure, it also aids in creating a more uniform pressure
over the height of the cell. Due to gravity the pressure
drop AP across the granular layer is the weight of the
layerW (i.e., AP = (P4+W/L) —P=W/L = Nmg/L,
where m is the particle mass). The average pressure % 05 15 2 25 3
is P= (P+W/L)/2= (W+W)/2L, and the relative /D
pressure variation iSSP = AP/P = 2W /(W + W).
Thus, 0< P < 2, with the maximum aW = 0 or no FIGURE 3. Experimental (solid)_and_numer_ical (das_hed, ex-
floating weight. We find that fow < W /2, 3P > 4/3 tracted from [4]) curves of the radial distribution functions for
the inhomogeneity of the pressure leads to other effect ° V,i';:f g‘fe%tigﬂeoga(r:?\/cvu?\%nft;ln thg g Irection of decreasing
such as surface fluidization as previously seen in similar ' ¢=10
systems (e.g., [11]). In the current studiasis always
greater thawyf or 6P < 1.

We use the same high-speed digital photography sysg,
tem developed for the isochoric system to measure th
positions of the plunger, the weight, and all of the par-

1

Structure: We identify three key microscopic mea-
res to compare the structure of the isochoric granular
KESSto equilibrium system: radial distribution function,

. . . ; bond order parameter, and shape factor [4]. Each one fo-
ticles in the cell with a relative accuracy of 0.04%[f —,ce5 on 4 different aspect of the structure—the radial

or approximately 22jm at a rate of 840 Hz. We track yisyribtion on positional order, the bond order param-

the particles fr.om frame to frame and assign a velocity Weter on orientational order, and the shape factor on the
each one, typicallyw D/5 per frame.

a valuable comparison. For more details on these and
other measures in our granular NESS see [1].
Radial Distribution Function: The radial distribution
Sfunction g(r) is a standard way of describing the aver-
age positional structure of particulate systems [§2])
measures the probability that two particle centers are a
Ydistancer apart regardless of orientation. For hard parti-
cles there is zero probability that the particles overlap so
g(r) =0 forr < d, whered is the diameter of the parti-
cles.
In Fig. 3 we plotg(r) for severalg. For low filling

) ) . fractions ( < 0.65) we observe fluid-like behavior, and
We compare the 2D uniformly-heated horizontal ISO- 1) has peaks ay/d ~1, 2 and 3, as is commonly seen in
choric granular NESS described above to equilibriumpa.q sphere simulations [12]. The peaks represent corre-
systems. We focus on three important aspects: structurgyisns in the distances between particles. At higher den-
diffusion (caging dynamics), and velocity distributions. g;tiag (065 < @ < 0.72),g(r) develops a shoulder below

In this system, three phases emerge depending on the ﬁl!her/d — 2 peak, which evolves into a distinct peak lo-
ing fractiong as shown in Fig. 1—gas, intermediate, and .otaq ar/d = /3, signifying strong hexagonal packing.
crystal. The boundaries of these phases are determinge,, eachy(r) experimental curve in Fig. 3, we have su-

by the orientational structure of the particle as describecberposed a corresponding (dashed) curve from the Monte
below. Carlo simulation of equilibrium hard disks of Moucka

is initially in a perfect crystalline state. To prepare the
system initially in the densest state, we increfde 16
and then slowly lower the acceleration to zero. From thi
state we increadein 256 steps untilr = 16 and then de-
crease in another 256 steps ufitid= 0. At each step we
take data. The time for each step is variable but typicall
1-10s.

RESULTS
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FIGURE 4. Semi-logarithmic plot of the bond-orientational
order parametenyg. The first two lines, | and Il, are least W 8 Class A -
squares fits of the forngy ~ exp/Ag] and line 1ll is a linear é’
fit of the form ¢ ~ A@. The dashed and solid vertical lines are g 0.6 -
located atg = 0.652 andg; = 0.719, respectively. 5 rf‘
2047 e
R
. . II Class B~ q‘.
and Nezbeda [4], for identical values @f The agree- 0.z 3
ment forr/d > 1.1 is so good that most of the numeri- Al : ‘-.“__
cal curves are hidden by the experimental curves. There ‘ ‘ ‘ ‘ ‘ |
are no fitting parameters; the curves only dependppn 02 03 04 05 06 07 08

. . . . : Filling fraction, @
which is measured directly in the experiments and the

simulations. The only discrepancies occurifpd < 1.1, FIGURE 5. (Top) Plot for the probability distribution func-
as shown in the inset of Fig. 3 fgr= 0.60. This devia-  tions of shape factoR({, @) for 6 values ofp. The two vertical
tion is due to the fact that in granular NESS the systenfines located af = 1.159 and{ = 1.25 divide the Voronoi cell

is not composed of 2D disks, but 3D spheres in a thintypes into 3 classes, A, B and C. Experimental curves are solid

trv. This leads t t-of-nl llisi d and numerical are dashed (extracted from [4]). (Bottom) Frac-
geometry. ,'S eads 1o Ol'! -Ol-plane collisions and ar;,, particles in each of the 3 classes A, B and C, (defined in
apparent particle overlap, since we measure only the 234, panel) as a function of filling fraction.

projection. This also lowers threeasured value ofg(r) at

contactg(d), which is important in kinetic theories, but

theactual value, which can be estimated from the known 5jye of the bond orientational order parameter tends to
layer thickness of Bd, is consistent with the equilibrium global

unity in the crystal phase, butg < 1 for a disor-
value. From these measurements the structure of granue, . q phase. Two differephase boundaries: ¢ — 0.652

lar NESS is essentially indistinguishable from the €QUi-and g — 0.719 can be identified in Fig. 4 based on the

librium structure. ; L :
. . slope of Ys(¢). The experimental behavior is identical
Bond Order Paxamefstr);The global bond-orientational equilibril(Jm) behavior, in which a two-step continu-
order parameter we measures the extent t0 oys phase transition is observed during 2D crystalliza-
which particles have 6-fold (hexagonal) orienta- tjon [13]. First, the isotropic fluid phase develops long
tional order regardless pf distance. _In eq_um_bnum range angular order creating a hexatic phase, then the
systems angular correlations also arise @sis in-  hexatic phase develops long range positional order cre-
creased [13]. These correlations are quantified b)éting a crystalline phase.
W = N3N 1M Z',-V':ilése'j |, where N is the Shape Factor: To examine the structure in more de-
number of particles in the observation winddiy, is the  tail we examine the local topology of Voronoi cells using
angle between the particleandj and a fixed reference, the shape factof as defined by Moucka and Nezbeda
andM,; is the number of nearest neighbors of particle [4]. The shape factor is a sensitive measure used to quan-
found using the Voronoi construction [14[11§'°bal is 0 tify structural changes in the fluid-to-crystal transition
for random positions and 1 for perfect hexagonal order. 2D.  is defined at the particle level, using Voronoi tes-
In Fig. 4 we plot the dependence mg")bal ong. The sellation, asf; = C?/4nS, where§ is the surface area



andC; the perimeter of the Voronoi cell of th&" par- ‘ ‘ ‘
ticle. For circles{ =1 and{ > 1 for all other shapes 1 +sindle /
({ =4/m~ 1.273 for square{ = rr/5tan(17/5) ~ 1.156 10 O slope=1__ 7,
for regular pentagons, afd= 6/v/3m ~ 1.103 forreg- b oers
ular hexagons). Thereforé, quantifies the topology of SN R
the Voronoi cells associated with the individual particles = A
In Fig. 5(top) we present a plot of the distribution of 007
shape factorsP((, ¢) for severalg. We superpose nu- 107
merical data (dashed lines) from Monte Carlo simula- M/
tions of equilibrium hard disks [4], for the same values of
@, and find that our experimental results are nearly iden- 2| | /4
tical with the numerical simulations with no adjustable
parameters. For lowp, P({) is broad with a flat maxi- < ‘ ‘ ‘
mum, representing a random distribution of Voronoi cell 107 1072 107 10° 10
types. Asg is increased, () becomes localized around Time (s)
a maximum, which moves toward lower values @f

> (mm®)

MSD, <[r(t)-r(0)

Eventually, forg > 0.5 a distinct second maximum ap- F/GYRE 6. Time dependence of the Mean Square Displace-
: : ment for various values of filling fraction (numerical values

pears. A_t the cr_ystallization poing; = 0'719_' the origi- shown in the box), except for the upper most curv\hich is
nal maximum disappears and the new maximum centerefdy a single particle in the cell. The arrow points in the direction

at{ ~ 1.1, the value for regular hexagons, rises sharplyof increasingp. Along the arrow, the symbols (*) and (+) are

The two maxima suggest at least two distinct classes ofocated atg and ¢, respectively, to help place the curves in

shapes. the fluid’s phase diagram. The horizontal line (located at 9.954
To quantify the classes (A, B, and C) we follow the mm?) c_orregpono!sto the square o_f 1/4_th_oftheI|near_d|men5|on

. of the imaging window, above which finite system size effects

classification scheme proposed by Moucka and Nezbed%!acome important.

as shown in Fig. 5(top). The boundary between classes A

and B is set at the non-zero minimumf¢) which is

only weakly dependent opand has an average value of j. sean here is qualitatively identical to that of ordinary

{min =1.159. The uppel CUt'Of.f qu=125forclassBis  yange fluid systems like colloids [5, 15] and supercooled
set so that when the two maxima®f{) are equal, the Ifquids [16]

number of particles in classes A and B types are equa We examine the MSD of the particle to more fully

(ie.. J§" P()dd = 75 P(Q)dd). understand the dynamic state of the system and to further
In Fig. 5(bottom) we plot the fraction of particles of compare granular NESS with equilibrium systems. The
each typena(@), ng(@), nc(@) as a function ofp. The ~ MSD M(t) = ([X(t) —X(0)]?), whereX(t) is the position
plot shows a clear change in the slopemf(¢) and of a particle at timet, X(0) is its initial position, and
ne(@) at ¢ = 0.719, the onset of crystallization. There the bracketg.) represent ensemble averaging over many
are several features negr For examplena (@) ~ ng(@) realizations. A log-log plot oM(t) for a range ofg
andnc(¢) ~ 0. However, these features are not sharp ands shown in Fig. 6. GenerallyM(t) ~ t?® anda is
would yield a different value ofy. Further, itis not clear ysed to characterize the motion. At the shortest times the
why having equal numbers of type A and B is significant. motion of the particles is ballistiy = 2. They simply
Regardless of the meaning of these features, they am@ove according t6i(t) = vt, andM(t) ~ t2, which gives
exactly the same for granular NESS and equilibrium hardg slope of 2 on the log-log plot. At the lowest density
disk simulations. (marked with a+) there is only a single particle in the
Caging dynamics: Fig. 1 shows typical single particle cell, which moves diffusively and the slopeldi(t) tends
trajectories in each of the three phases found in granulagp 1. This shows that the trajectory of a single particle is
NESS. Simple fluid behavior is observed at Ipachar-  randomized over the cell.
acterized by random diffusion (Fig. 1(left)). Above crys-  Three types of behavior are seen in our granular
tallization (¢ > ¢) the particles are completely confined NESS, corresponding to the three snapshots in Fig. 1.
by their six hexagonally packed neighbors (Fig. 1(right)). At low densities ¢ < 0.6, Fig. 1(left)), the particle mo-
In the intermediate phase, both behaviors are seen but qibn is diffusive. This means that > 1 with a = 1 at
different time scales (Fig. 1(center)). At short times;par |ong times. For high densitiegp(> 0.719, Fig. 1(left))
ticles are trapped in cages formed by their neighbors, buthe particles are trapped in their crystalline cells, and
they eventually escape to another cage and at long timeg(t) becomes a constant value set by the lattice spac-
they diffuse from cage to cage. We use the Mean Squarghg with a = 0. However, in the intermediate phase
Displacement (MSD) to show that the caging dynam-(0.6 < ¢ < 0.719, Fig. 1(center)) a plateau develops at in-



©fD) thatT is also, the variance @¥(v). Then, the normalized
o (0.44,50,4) Maxwell-Boltzmann isfyg(c) = 1//Texp(—c?).
© (0.53,50,4) Deviations from the Maxwell-Boltzmann distribution
Z Eg:gjgg'ﬁ; in granular material are well established [9, 10]. In par-
> (0.80,50.4) ticular, we distinguish between deviations at low veloc-
v (0.57,40,4) ities (/c| < 2) and at high velocities or tail§of > 2).
Eg:g;sg'g Previous experiments focused on the tails, which repre-
(0.57.80.4) sent less than 0.5% of the velocities. It is seen that ex-
(0.57,100,4) perimental distributions exhibit a considerable overpop-
Egg;gg%“) ulation and have been shown to scale as[e#|],
e | - (057503) y = 3/2. This behavior is in agreement with numerical
1 -o0s 0 05 1| (0.57,50,4) [23] and theoretical [24] predictions. We see the same
In(lel) (0.57,50,6) behavior as shown in Fig. 7 for many experimental con-

_ ditions. The double logarithm creates a curve with slope

FIGURE 7. Double log plot of the tails oP(c) for many  oq,,5| toy. Even though these tails correspond to events
filling fractions (), frequencies {) and acceleration™). The - - . .
with extremely low probabilities, they increase the vari-

solid line correspond to stretched exponentials of the form f the distributi e d lead or di
~ exp(—A|c|3/2) whereas the dashed lines correspond to the2NC€ O the cistribution and and leads to a major dis-

Gaussian behavior of the form exp(—Ac?) crepancy in the region of high probability in the low ve-
' locity portion of the distribution [25] which have, thus

far, been greatly overlooked in experimental work.
termediate times where the motion is sub-diffusive with. The velocity distribution is of fundamental importance

0 < a < 1. This plateau appears just before the quuidus'n kinetic theories of granular material (see e.g., [26B. A
point@ — 0.652 and gradually becomes increasingly vis- & result, there have been many theoretical and numerical
: - -0 : tudies on velocity distribution in granular NESS [23, 27]
ble ab ked as * in Fig. 6 t tth Studie granuiar i

ible aboveq (marked as * in Fig. 6 to orient the curves which the steady state velocity distribution has been

in the phase diagram). This represents the slowing dowt]! . S
due to the cage effect as shown in Fig. 1(center). found to deviate from the Maxwell-Boltzmann distribu-

This behavior is the same as that seen in equilibriumtion' van Noije and Ernst [24] studied these velocity dis-

systems. We have also compared a number of other me%@bunons using approximate solutions to the inelastic

sures in [2], which show similar agreement with equi- .ard 'sphere' Enskog-Bo!tzmann equation 'by an expan-

librium systems. In molecular systems this behavior igSion in Sonine polynomials. Their theoretical analysis
; L ; ; has been validated by numerical studies in both molec-

typically observed indirectly from scattering experimgent . ; ) .

ypicaly y g &p ular dynamics [23] and direct simulation Monte Carlo

[15]. In colloids, however, caging motion has been ob- : . . i
served directly through microscopy, in both 3D [5] and [28, 29]. The use of Sonine corrections is particularly
' Iattractive since it leaves the variance of the resulting ve-

quasi-2D [6] geometries. A large number of theoretical ™ .=~ "~ ="'~ X
[17, 18] and numerical [7, 19] studies have set out to fur_locny distribution unchanged but leads to a non-Gaussian
’ ' fourth moment or kurtosi # 3.

ther investigate the importance of this heterogeneous d o : .
¢ P g _ For low velocities [c| < 2), which corresponds to high

namics. The relevance of caging in driven granular mate - : L
- PP, : probability (> 99.5%) the experimental velocity distri-
rials [20, 21] and air-fluidized particle systems [22] hasbution in granular NESS fitB(c) = fus(1 -+ a0S(c?))

only recently started to be addressed. whereS(x) = (1/2¢ — 3/2x+ 3/8) is the 1D second

Velocity distributions: As described above the iso- der Soni | iabo th | fitt
choric granular NESS is nearly identical to its equilib- order sonine polynomiaa, the only new hitting param-
eter, is a function of filling fractiop alone [3]. In Fig. 8

rium counterpart in structure and diffusion. However, . :
there are a few differences. The most important is in™'€ PIOA(C) = P(c)/fus(C) — 1. 'I;he resultis a function,
the single particle velocity distributioR(V). This distri- Wh'Ch IS We”. represented @Z(C )- Also_shown n Fig.
bution is a Maxwell-Boltzmann for equilibrium fluids. 8 is a fit to higher order Sonine corrections. While these

fu(V) = Aexp[—vz/(ZT)], where the mass of the par- higher order corrections improve the fit slightly, it does

ticles is set to 1 and is the equilibrium temperature not justify adding new parameters [3].

measured in units of energy (i.e., T is the average kinetic hTh_e EhEaSSg trags_ltlon t? crystallme_zl_tc))r_der In t?e ISO-
energy per particle). To look for deviation from this in choric and in analogous equitibrium systems 1S

granular NESS, we focus on the distribution of a scaled'SeconOI order and proceeds through the complicated hex-

single component of the velocity— v/ﬂZT), wherev atic [13] or intermediate phase. To see if a first-order

is the unscaled velocity component ahdthe granular phase transition exists in a granular NESS, we exam-

temperature or average kinetic energy of the particlesi.ne the isobaric (constant pressure) system described

In defining T we set the mass to 1 for convenience SOabove. For the results described below, we fix the number
" 7"N = 68, the pressur®, and varied the energy injection



‘ ‘ ‘ ‘ 2. Forl < 8 the system is in a crystalline state as shown
® Experimental data is Fig. 2(top). Fol™ > 8 the system is in a gas state as

— Order-2 Sonine Poly shown is Fig. 2(bottom). Even though the valud afif-
= ==Higher Order Sonine Poly

15

fers by only 2.5%, across the transition the filling fraction
¢ changes frongs = 0.743+0.005 to@ = 0.6324-0.006
or 16% and the granular temperatufgy changes from
0.12+£0.04(m/s)? to 0.59-+ 0.08(m/s)? or a factor of 5.
The errors inp andT represent the run to run deviations.
The temperaturelyV, is the vertical velocity variance,
which is different from the horizontal velocity variance.
Anisotropic granular temperature is common in granular
NESS when the forcing is only applied in one direction.
‘ ‘ ‘ ‘ ‘ To check the reversibility of this transition we measure
-2 1 o 1 2 @ andT as a function of . The results forp are shown
educed velocity, ¢ . . . ..

in Fig. 9. TheT dependence is similar, but not shown
FIGURE 8. Experimental deviation function from Gaussian for clarity. Thg pI.ot showsp(") asT" is |ncregsed and .
behaviorA(c) for ¢ = 0.66. The solid line is the Sonine poly- decreased as indicated by the arrows. Following the solid
nomialay(1/2c¢* — 3/2¢2 +3/8) with one single fitting parame- ~ curve starting fronT” = 0, the system is in the densest
ter:ap, = 0.171. The dashed line is the higher order Sonine poly-crystalline state. A§ is increased the crystal begins to
nomial description of the formy8_,apSy(c?) with the follow-  expand andp decreases. At ~ 9 there is a sharp change
ing (five fitting parameters) Sonine coefficiends;= 0.1578,  in the density as the system goes from a crystalline state
ag = —0.0656,a4 = 0.1934,a5 = —0.1637 andhs = 0.0832. to a gaseous state. The sharp change is the hallmark of
a first-order phase transition. Asis increased further
the gas expands ang decreases smoothly. Whénis

Deviations A(c)

0.9 ‘ —— decreased starting from 16 the system traces the same
—9.00 g/min . . .
- = 4.50 g/min (reversible) path until” < 9 where hysteresis is clearly

08 0.82 g/min || visible. At ~ 7 the system freezes by a discontinuous

change in the density to a crystalline structure and then
follows a reversible path back fo= 0.

This is analogous to an equilibrium first-order subli-
mation phase transition (e.g. melting/freezing dry ice),
in which T plays the role of temperature. The hysteresis
represents super-cooling and super-heating. Moreover,
% just as in an equilibrium phase transition the hysteresis

4\%\« can be eliminated, by slowing down the rate of change
‘ ‘ ‘ ‘ ‘ ‘ ‘ of the control parameter. In this case, decreasing the rate
0 2 4 6 8 10 12 14 16 of change ofl" by a factor of 2 reduces the hysteresis

Maximum Acceleration, F=Aw’/g - Q as shown by the dot-dash curve. By decreasing by an-
other factor of 5 a completely reversible, discontinuous
transition is produced curve is produced as shown by the
dashed curve.

o
]

Volume fraction (@)

f’

0.5r

FIGURE 9. Plot of the filling fraction () as a function of
increasing and decreasifig(as indicated by the arrows) at 50
Hz, under isobaric conditions. The volume fraction plots are
shown for three different heating rate%go; 9.00g/min (solid
line), 450g/min second (dotted-dashed line) an®y/min
(dashed line) to illustrate the hysteretic behavior of the phase CONCLUSION
transition.g is the gravitational constant.
We have shown that uniform granular NESS behave very
much like their equilibrium counterparts. This is surpris-
strengthQ. We measure the filling fractiop and granu-  ing since energy is not conserved and must be supplied
lar temperaturd . As a proxy forQ, we usd’, the max-  to the system. The isochoric granular NESS has nearly
imum acceleration measured in units of the gravitationaidentical structure as compared to equilibrium simula-
constantg = 9.8m/s? at fixed frequencyf = 50Hz. A tions of hard disks. The particle diffusion shows caging
better proxy forQ is I /(2rtf), which isO T at constant  behavior just like that of equilibrium systems. The ve-
) locity distribution differs slightly from the equilibrium
First-order phase transition: Depending on the Maxwell-Boltzmann, but 99.5% of the differences can
value of Q =T two states can exist, as shown in Fig. be captured by a small correction which depends only on



the filling fraction. The isobaric granular NESS shows 12. B. Bernal, Proc. Roy. So@& 280, 299 (1964). P.

the standard signatures of a first-order phase transition M. Chaikin, Principles of Condensed Matter Physics
including rate-dependent hysteresis. The main difference (%a'gbr,'\ldggo%”;‘r’%rsgyl Plislséti}ﬁKﬁ I%9§5F)z-evm o457
is that mechanical equilibrium still requires both phas.es1 (1070). A Jaster, Phys. REVPHQ' 2’594y(1999)_

to have equal pressure_s, which is guaranteed by the 1SQ%. D. P. Fraser, M. J. Zuckermann and O. G. Mouritsen,
baric boundary condition, but the lack of energy con-  phys. Rev. A2, 3186 (1990).

servation removes the ordinary requirement of thermall5. P.N. Pusey and W. van MegBhysica A 157, 705 (1989).
equilibrium, that both phases have the same temperature. W. van Megen and S.M. Underwodhys. Rev. E 47, 248
Thus there exists a strong analogy between uniform gran- (ﬁggi)liesqu Non-Crystal. Solids 243 81 (1998). M. D
ular NESS and Qrdlnary equilibrium thermodynamics. In Ediger,Amnu. Rev Phst Chem. 51, 99 (2000).

the future, we will test the analogy between local thermo-

. o 4 ) 17. W. Goétze, inLiquids, Freezing and Glass Transition,
dynamic equilibrium and local uniform NESS in systems  ggited by J. P. Hansen, D. Levesque, and J. Zinn-Justin
with gradients.

(North Holland, Amsterdam, 1991), Les Houches Summer
Schools of Theoretical Physics Session LI 287 (1989).

18. L. F. Cugliandolo, irsl ow Relaxations and nonequilibrium
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M. Feigelman, J. Kurchan and J. Dalibard (Springer

) . Berlin/Heidelberg) Les Houches Summer Scha@l 367
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